

ISO/IEC SC29國際會議分享

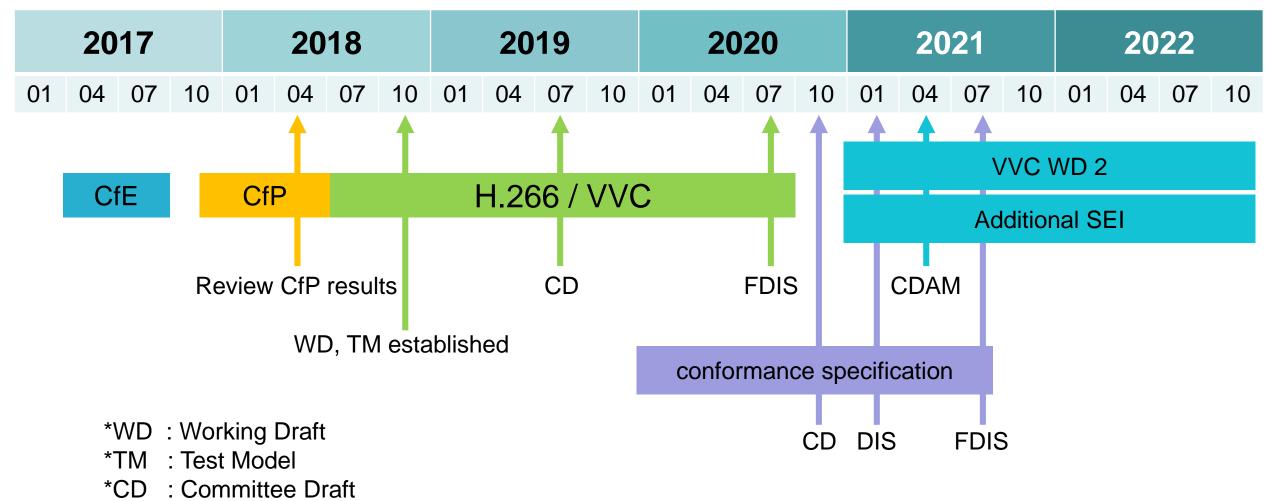
Ching-Chieh Lin

26th March 2021

Outline

- Joint Video Expert Team(VVC/H.266)
- Video Coding for Machine(VCM)
- Point Cloud Compression(PCC)

Joint Video Expert Team


Joint Video Expert Team

- 21st Meeting of JVET (Virtual meeting)
 - Date: 6 ~ 15 January, 2021
 - Approximately 350 participants
 - Approximately 80 proposals
 - 10 High-level syntax and profile
 - 49 Low level tools technology
 - 21 High Bit-depth coding
 - 24 Neural Network-based technology
 - 4 other coding technologies
 - 9 Others(Standard development, Text errata, test condition, test material)
 - 8 Verification test and conformance test
 - 7 Software development, Implementation, complexity analysis and encoder optimization

H.266 Timeline

*FDIS: Final Draft International Standard

Status of VVC(1/3)

VVC version 2

- VVC Working Draft 2 of ISO/IEC 23090-3 Amd.1 (N34 | JVET-U2005)
- Currently includes new level, and SEI hooks (payload type added)
- Entropy coding requires changes for high bit depth and high bit rate, currently under investigation in CE
- Versatile SEI messages for coded video bitstreams
 - Working Draft 1 of ISO/IEC 23002-7 Amd.1 Additional SEI messages (N 31 | JVET-U2006)
 - SEI messages added: Scalability dimension, multiview acquisition information, depth representation information, alpha channel information, and extended DRAP

Test Model & Reference Software

- Test Model 12 of Versatile Video Coding (VTM 12) (N32 | JVET-U2002)
- ISO/IEC DIS 23090-16 Reference Software for Versatile Video Coding (N 39 | JVET-U2009)
- Various editorial improvements of encoder description

Conformance and Verifiacation test

- ISO/IEC DIS 23090-15 Conformance Testing for Versatile Video Coding (N 37 | JVET-U2008)
- VVC verification test plan (Draft 5) (N33 | JVET-T2021)
- Next round of verification tests: Ready to go for HD SDR (RA/LD conf.) and for 360° video, and progress in HDR
- Follow-up report of verification tests planned to be available in April (if Covid-21 allows)

ITRI Industrial Technology Research Institute

Status of VVC(2/3)

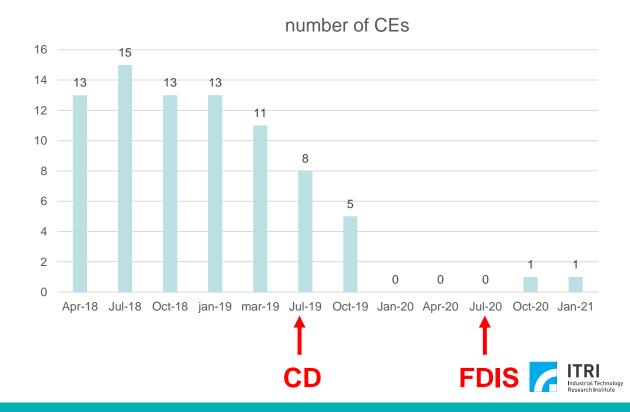
- Current Common Test Conditions(CTC)
 - 360 (updated)
 - HDR/WCG (JVET#19)
 - non-420 / SCC (JVET#18)
 - Lossless, near lossless, and mixed lossy/lossless
 - SDR
 - reference picture resampling
 - HM Video Coding Experiments
 - neural network-based video coding technology
 - High Bit Depth and High Bit Rate Coding
 - enhanced compression tool testing
- Profiles for Version 1 (6 profiles)
 - "Main 10 Still Picture" profile and "Main 10 4:4:4 Still Picture" profile
 - "Main 10" and "Multilayer Main 10"
 - "Main 10 4:4:4" and "Multilayer Main 10 4:4:4"
 - Additional profile for multilayer 8K was agreed to be established

ITRI
Industrial Technology
Research Institute

Status of VVC(3/3)

- Core Experiment
 - Core experiment on high bit depth and high bit rate entropy coding in VVC (N 35 | JVET-U2018)
- Explorations
 - Exploration experiment on neural network-based video coding technology (N 40 | JVET-U2023)
 - Exploration experiment on enhanced compression beyond VVC capability (N 40 | JVET-U2024)

AHGs


- Project Management (AHG1)
- Draft text and test model algorithm description editing (AHG2)
- Test model software development (AHG3)
- Test material and visual assessment (AHG4)
- Conformance testing (AHG5)
- 360° video coding tools, software and test conditions (AHG6)
- Coding of HDR/WCG material (AHG7)
- High bit depth, high bit rate, and high frame rate coding (AHG8)
- SEI message studies (AHG9)
- Encoding algorithm optimization (AHG10)
- Neural network-based video coding (AHG11)
- Enhanced compression beyond VVC capability (AHG12) (new)

Number of JVET contributions and CEs

- FDIS之後技術提案數量逐漸減少,本次會期僅有78篇提案。
- 本次會期JVET開始著手H.266 extension的制定工作,成立了新的CE, 探討high bit-depth與high bitrate相關議題。

Exploration experiments (1/2)

- on neural network-based video coding technology
 - Primary goal is evaluating and understanding NNVC technology
 - Conditions for testing, training and complexity assessment of NN based video technology have been improved, suitable for both individual coding tools and end-to-end architectures
 - Loop filtering and super resolution methods are subject of investigation
 - Understanding impact of training recognized to be important (selection of training data, loss function, etc.) new large set of video training data was offered
 - Clarification on reporting alternative metric (MS-SSIM) achieved
 - First remote expert viewing on some selected examples conducted would be too early drawing conclusions

Exploration experiments (2/2)

- Exploration experiment on enhanced compression beyond VVC capability
 - Primary goal is studying properties of video coding tools and technology not included in current VVC profiles
 - In first place, restriction to more "conventional" (non NN based), but the relationship with the other EE might become important when maturing
 - Conditions for testing performance and complexity assessment have been defined, mainly based on well-known metrics such as BD rate and "tool on/off" testing
 - Besides standard VTM, a package of tools (from JVET-U0100) can be used as additional reference for testing, software will be provided; tools from this package will also be subject to testing
 - Bilateral filters and intra template matching prediction planned to be investigated additionally

ITRI Industrial Technology Research Institute

Performance comparison (1/3)

VTM 11.0 over HM 16.20

	All Intra Main10										
		Over HM 16.22									
	Υ	U	V	EncT	DecT						
Class A1	-29.04%	-32.17%	-34.07%	1545%	169%						
Class A2	-29.29%	-23.92%	-21.06%	2505%	177%						
Class B	-21.73%	-26.96%	-30.76%	2780%	177%						
Class C	-22.54%	-18.95%	-22.70%	3886%	192%						
Class E	-25.76%	-25.91%	-24.46%	2249%	170%						
Overall	-25.06%	-25.37%	-26.85%	2576%	178%						
Class D	-18.47%	-13.31%	-13.42%	4414%	182%						
Class F	-39.33%	-39.73%	-42.22%	5107%	176%						

	Low delay B Main10									
	Over HM 16.22									
	Υ	U	V	EncT	DecT					
Class A1										
Class A2										
Class B	-30.81%	-37.42%	-35.46%	744%	152%					
Class C	-29.13%	-22.62%	-22.41%	897%	157%					
Class E	-33.35%	-40.13%	-34.22%	357%	125%					
Overall	-30.88%	-33.16%	-30.80%	659%	147%					
Class D	-26.02%	-16.65%	-15.91%	932%	165%					
Class F	-42.80%	-44.57%	-44.66%	489%	130%					

	Random access Main10										
		Over HM 16.22									
	Υ	Y U V EncT DecT									
Class A1	-41.67%	-43.42%	-49.16%	675%	157%						
Class A2	-47.76%	-46.20%	-44.93%	752%	170%						
Class B	-41.72%	-53.65%	-51.59%	754%	155%						
Class C	-34.68%	-37.88%	-39.61%	1033%	163%						
Class E											
Overall	-41.04%	-45.91%	-46.58%	802%	161%						
Class D	-30.84%	-33.63%	-33.40%	1161%	164%						
Class F	-48.00%	-50.91%	-51.69%	572%	137%						

	Low delay P Main10											
		Over HM 16.22										
	Υ	Y U V EncT D										
Class A1												
Class A2												
Class B	-35.15%	-39.91%	-37.83%	691%	168%							
Class C	-30.83%	-22.55%	-22.66%	824%	167%							
Class E	-36.05%	-43.41%	-37.33%	353%	139%							
Overall	-33.93%	-35.00%	-32.65%	619%	160%							
Class D	-27.47%	-15.71%	-14.93%	855%	174%							
Class F	-42.31%	-43.56%	-44.09%	524%	138%							

Performance comparison(2/3)

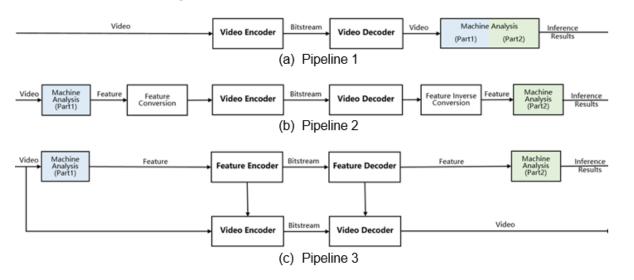
 PSNR-based Common Test Conditions BD-Rate savings relative to HEVC reference software (10 bit)

vs HM		AI RA LDB				RA				LDP		
	gain	Enc.	Dec.	gain	Enc.	Dec.	gain	Enc.	Dec.	gain	Enc.	Dec.
VTM 1.0	4%	9.6X	1.1X	8%	2.2X	0.8X	8%	1.6X	0.8X	9%	1.5X	0.9X
VTM 2.0	18%	18X	1.6X	23%	3.7X	1.3X	18%	3.2X	1.3X	22%	2.9X	1.3X
VTM 3.0	19%	19X	1.6X	27%	5.3X	1.3X	21%	4.4X	1.2X	24%	3.7X	1.2X
VTM 4.0	21%	22X	1.7X	32%	8X	1.5X	23%	6.6X	1.4X	27%	5.8X	1.5X
VTM 5.0	23%	34X	1.9X	33%	10X	1.9X	25%	7.4X	1.5X	28%	6.9X	1.6X
VTM 6.0	24%	27X	2.0X	35%	10X	1.9X	25%	7.7X	1.7X	29%	7.4X	1.8X
VTM 7.0	24%	27X	1.8X	35%	9.5X	1.8X	29%	6.9X	1.7X	33%	6.4X	1.8X
VTM 8.0	24%	31X	2.2X	35%	10.7X	2X	30%	7.7X	1.7X	33%	7.0X	1.8X
VTM 9.0	25%	27X	2.0X	36%	10X	1.9X	31%	7.5X	1.7X	34%	6.8X	1.7X
VTM10.0	25%	26X	1.7X	36%	8.6X	1.6X	31%	6.6X	1.4X	34%	6.2X	1.5X
VTM11.0	25%	26X	1.8X	41%	8.0X	1.6X	31%	6.6X	1.5X	34%	6.2X	1.6X

RI strial Technolog arch Institute

Performance comparison (3/3)

PSNR-based Common Test Conditions BD-Rate savings relative to VTM reference software (10 bit)


		Al			RA			LDB			LDP	
	gain	Enc.	Dec.									
VTM 2.0 vs. VTM 1.0	14.5%	1.9X	1.5X	16.1%	1.7X	1.5X	10.8%	2.0X	1.5X	14.1%	1.9X	1.4X
VTM 3.0 vs. VTM 2.0	1.6%	1X	1X	5.8%	1.4X	1X	3.4%	1.4X	0.9X	3.3%	1.2X	0.9X
VTM 4.0 vs. VTM 3.0	2.4%	1.1X	1X	5.5%	1.5X	1.2X	3.6%	1.5X	1.1X	3.6%	1.6X	1.1X
VTM 5.0 vs. VTM 4.2	2.5%	1.6X	1X	2.4%	1.3X	1.1X	1.2%	1.1X	1.1X	1.5%	1.2X	1.1X
VTM 6.0 vs. VTM 5.2	1.4%	0.8X	1X	2.3%	0.9X	1X	0.7%	1.1X	1.1X	1.5%	1.1X	1.1X
VTM 7.0 vs. VTM 6.2	0.2%	1X	1X	-0.1%	1X	1.1X	5.2%	0.9X	1.2X	5.1%	0.9X	1.2X
VTM 8.0 vs. VTM 7.0	-0.4%	1.1X	1.3X	0.2%	1.1X	1.1X	0.9%	1.1X	1.0X	0.2%	1.1X	1.0X
VTM 9.0 vs. VTM 8.1	1.2%	1X	1X	1.7%	1X	1X	1.1%	1.0X	1.1X	1.1%	1.0X	1.0X
VTM10.0 vs. VTM 9.0	-0.01%	1X	1X	-0.03%	1X	1X	-0.13%	1X	1X	-0.13%	1X	1X
VTM11.0 vs. VTM 10.2	0.00%	1X	1.1X	-7.93%	1X	1X	0.00%	1X	1X	0.00%	1X	1X

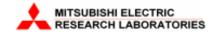
Video Coding for Machine

Current status of VCM

- Issued Call for Evidence document
- Currently focus on machine consumption video coding
- Clarified license issues of test sets
- Use BD-mAP as performance metrics
- Limit to 3 evaluation datasets due to licensing issue
- Processing pipelines for CfE (initially focus on (a) and (b))

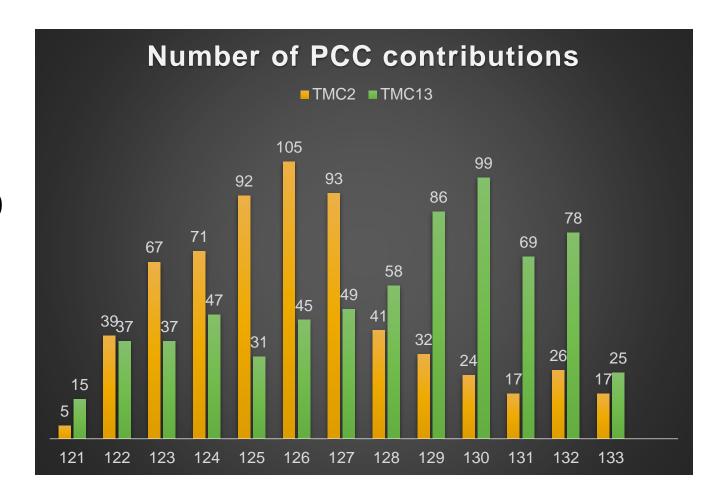
Machine Task	Evaluation Dataset
Object detection	OpenImageV6 FLIR (IR dataset)
Instance segmentation	OpenImageV6
Object tracking	HiEve-10
Pose Estimation	HiEve-10
Action Recognition	HiEve-10

VCM Participants

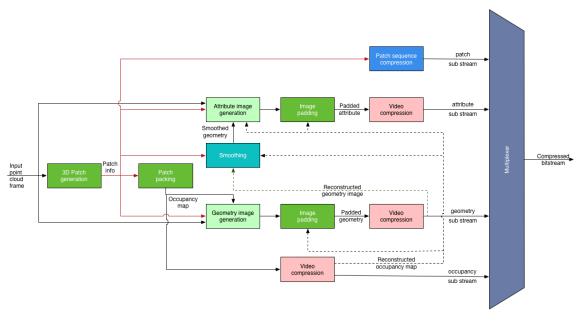


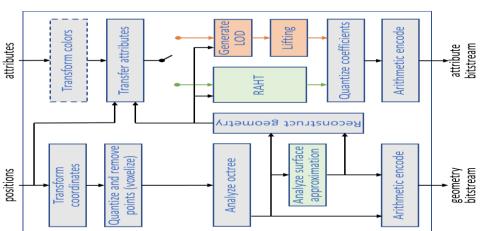
Timeline of CfE

2021-01-15	Release of Call for Evidence document
2021-01-31	Availability of neural networks, test data, and description for the respective use cases.
2021-03-21	Registration deadline for intend to response
2021-04-12	Deadline for electronic submission of binaries, bitstream results
2021-04-19	Deadline for submission of descriptions (MPEG input contribution) of approaches and evaluation results
2021-04-22~30	Evaluation of responses - the CfE will be evaluated at the 134 th MPEG



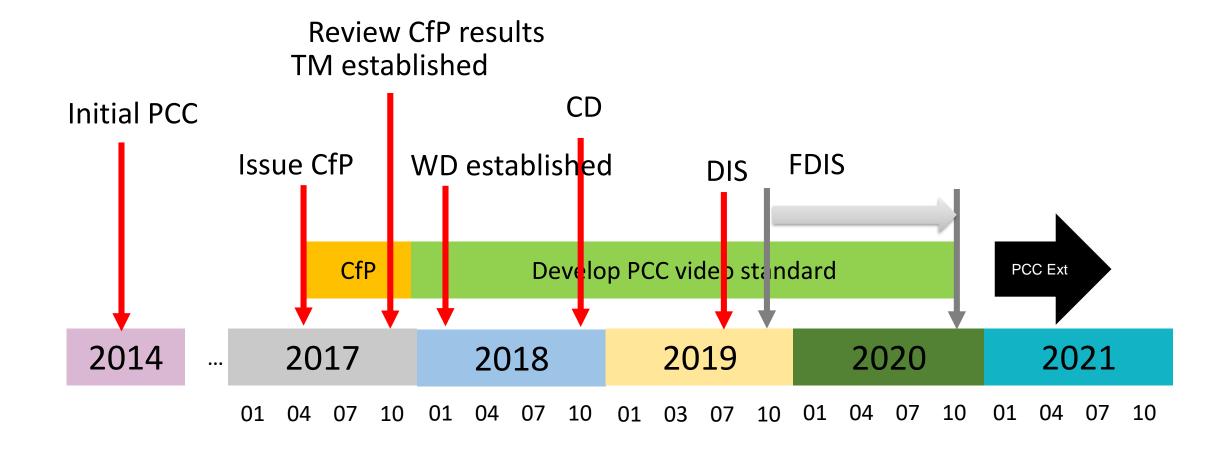
Point Cloud Compression


PCC meeting

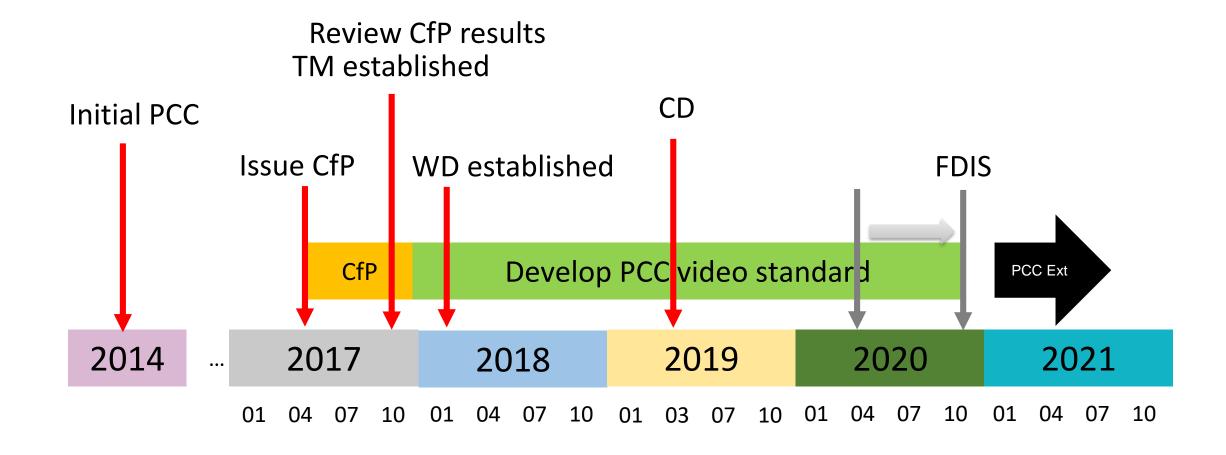

- 4nd and 5rd F2F Meeting of PCC after DIS
- Date:
 - MPEG133: 20 ~ 24 Apr, 2019
- Approximately 60+ participants

PCC AHGs

V-PCC
Video-based PCC
appropriate for continuous dynamic PC



G-PCC
Geometry-based PCC
appropriate for sparse PC



V-PCC Timeline

G-PCC Timeline

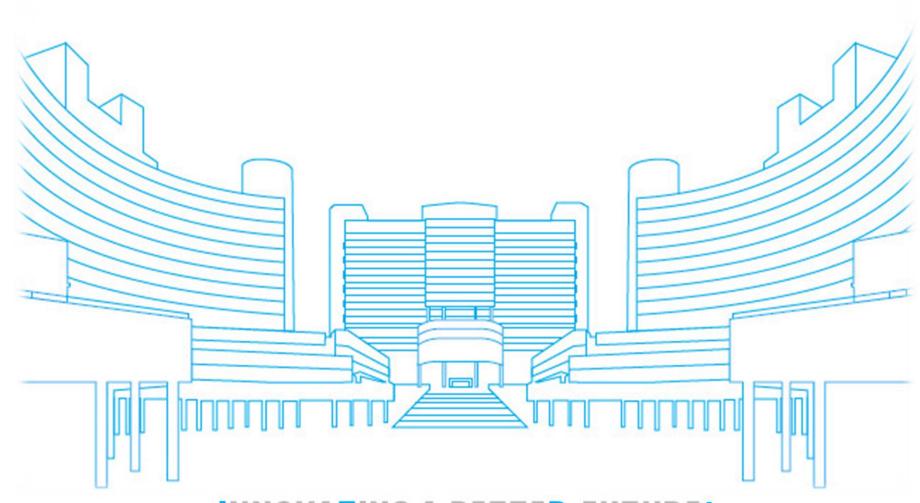
PCC related activities

- EE for Multiple video codec integration in V-PCC software
 - Integration of the internal AVC codec
 - Scalable High efficiency Video Coding (SHVC) codec integration in V-PCC software
- EE for G-PCC RDO
- Improvements in TM2 v12.1
- Draft V-PCC White Paper
- Issue new version of the Conformance for V-PCC CD
- Conformance for G-PCC

Candidate technologies for V-PCC Ver. 2

Video-based Dynamic Mesh Coding

- Dynamic Mesh Coding within the V3C framework
- Preparation of the CfP: requirements, metrics, anchors, subjective evaluation
- CfP expected for April
- New content available (PC and DM)
 - Volucap_T003_ThomasScenic-03 (748 frames @ 25fps)
 - Volucap_T097_Mitch2.1-05 (475 frames @ 25 fps)
 - XD Production "Football player juggling" (+300 frames, @ 25 fps)



PCC Participants

ITRI Industrial Technology Research Institute

INNOVATING A BETTER FUTURE!

